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Lecture 5: The Real Spectral Theorem



Recap

* Eigenvectors and eigenvalues, eigenvectors of same eigenvalue form a
subspace. Eigenvectors of different eigenvalues are linearly independent, inner
products, norm, Cauchy-Schwartz.

* Gram-Schmidt orthogonalization, any finite-dimensional inner product space
has an orthonormal basis.

* Properties of orthonormal bases: Fourier coefficients, Parseval’s identity

* Adjoint of a linear transform

* Reisz representation theorem. Use to prove that every linear transformation
has a unique adjoint

 Self-adjoint linear operators: eigenvalues are real, and eigenvectors
corresponding to distinct eigenvalues are orthogonal.



The Real Spectral Theorem [wﬁmte_dimensiona. }

Theorem: every self-adjoint operator @: V — V (which we know has real eigenvalues)
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

 E.g., square symmetric matrices over R".

* Gives a nice way to view action of such operators. Say ¢ has orthonormal
eigenvectors wy, ..., w,, with associated eigenvalues A4, ..., 4,,. Then:

For v = ), c;w;, we have p(v) = ); A;c;w;.

l.e., just stretching or shrinking in each “coordinate”.



The Real Spectral Theorem wﬁmte_dimensiona. }

Theorem: every self-adjoint operator @: V — V (which we know has real eigenvalues)
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

Proof strategy:

1. Show that any such @ has at least one eigenvalue.

2. Use (1) to prove the theorem.

We’ll do (2) first, then (1).



The Real Spectral Theorem [yﬁmm_dimensiona. }

Theorem: every self-adjoint operator @: V — V (which we know has real eigenvalues)
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

Proof part 2: induction on dimension of V.

* Base-case: dim(V) = 1. By part (1), there is at least one eigenvalue and
eigenvector, so just scale the eigenvector to be unit-length.

e Letdim(V) = k + 1. Let w be the eigenvector we are guaranteed by part (1)
and let W = span({w}). Let W+ ={v € V:(v,w) = 0}.

 Now, the idea to finish is to (a) show that W+ is a subspace of V of dimension k,
(b) show that ¢ restricted to W+ is a self-adjoint operator on W+ (and in particular
maps W+ to W), and (c) apply our inductive hypothesis to W+ (which by design is
orthogonal to w).



The Real Spectral Theorem wﬁmte_dimensiona. J

Theorem: every self-adjoint operator @: V — V (which we know has real eigenvalues)
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

(a): If (v{,w) = 0 and (v,, w) = 0 then (a,v; + a,v,,w) = 0, so it’s a subspace.
Dimension is k because a basis for W+ U {w} is a basis for V.

 Now, the idea to finish is to (a) show that W+ is a subspace of V of dimension k,
(b) show that ¢ restricted to W+ is a self-adjoint operator on W+ (and in particular
maps W+ to W), and (c) apply our inductive hypothesis to W+ (which by design is
orthogonal to w).




The Real Spectral Theorem wﬁmte_dimensiona. J

Theorem: every self-adjoint operator @: V — V (which we know has real eigenvalues)
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

(b): If (v, w) = 0 want to show that (¢ (v),w) = 0.
* We can use the fact that ¢ is self-adjoint and w is an eigenvector.

* {p(W),w) = (v, (W) = (v,Aw) = Av,w) = 0.

 Now, the idea to finish is to (a) show that W+ is a subspace of V of dimension k,
(b) show that ¢ restricted to W+ is a self-adjoint operator on W+ (and in particular
maps W+ to W), and (c) apply our inductive hypothesis to W+ (which by design is
orthogonal to w).




The Real Spectral Theorem wﬁmte_dimensiona. J

Theorem: every self-adjoint operator @: V — V (which we know has real eigenvalues)
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

(c): Now, just apply induction.

* Let {wy, ..., W)} be an orthonormal basis for W+ of eigenvectors of ¢ restricted to W+.

* SO, {Wy, ..., Wy,,— is an orthonormal basis for V of eigenvectors of Q.
!  liwl

 Now, the idea to finish is to (a) show that W+ is a subspace of V of dimension k,
(b) show that ¢ restricted to W+ is a self-adjoint operator on W+ (and in particular
maps W+ to W), and (c) apply our inductive hypothesis to W+ (which by design is
orthogonal to w).




The Real Spectral Theorem wﬁmte_dimensiona. }

Theorem: every self-adjoint operator @: V — V (which we know has real eigenvalues)
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”).

Proof strategy:

1. Show that any such @ has at least one eigenvalue.

2. Use (1) to prove the theorem.

Now, need to do (1).



Existence of eigenvalues

Let’s begin by assuming I/ is over C. Then won’t need self-adjointness.

Example: [O _1]
P11 0



Existence of eigenvalues

Let’s begin by assuming V' is over C. Then won’t need self-adjointness.

Proposition 2.1 Let V be a finite dimensional inner product space over C and let ¢ : V — V be a
linear operator. Then @ has at least one eigenvalue.

Proof: Letdim(V) = n. Letv € V \ Oy be any non-zero vector. Consider the set of n + 1
vectors {v, ¢(v), ¢*(v),..., ¢"(v)} where ¢'(v) = ¢(¢' '(v)). Since the dimension of V is
n, there must exist ¢y, . . ., ¢; € C not all 0 such that

co-v+cy-@(v)+--+cng’(v) = Oy.

For convenience, assume that ¢, # 0, otherwise we can instead consider the sum to the
largest i such that ¢; # 0. What we want to do now is to factor the expression above into a
product of degree-1 terms. This is where working over C will be useful.



Existence of eigenvalues

Let’s begin by assuming V' is over C. Then won’t need self-adjointness.

Proposition 2.1 Let V be a finite dimensional inner product space over C and let ¢ : V — V be a
linear operator. Then @ has at least one eigenvalue.

OK, so we have cyv + c;o(v) + -+ + ¢, 0" (v) = 0y with ¢,, # 0.

Let P(x) denote the polynomial ¢y + c1x + - - - 4+ ¢,x". Then the above can be written as
(P(¢))(v) = 0, where P(¢) : V — V is a linear operator defined as

P(':P) - = ﬂﬂ‘id—'_cll(p_'_”'—}_cnq}”;

with id used to denote the identity operator. Since P is a degree-n polynomial over C, it can
be factored into n linear factors, and we can write P(x) = ¢, [[i/_; (x — A;) for A1,..., A, €
C. This means that we can write

P({p) — Cn((p_’)“n*id)“‘(@_”"l'id)*



Existence of eigenvalues

Let’s begin by assuming V' is over C. Then won’t need self-adjointness.

Proposition 2.1 Let V be a finite dimensional inner product space over C and let ¢ : V — V be a
linear operator. Then @ has at least one eigenvalue.

OK, so we have P(¢p) = c,,(¢ — A, - id) ...(¢ — A1 - id), and P(¢)(v) = O.

Let wy = v and define w; = ¢(w;_1) — A; - w;i_1 fori € [n]. That is, we are working through
the computation of P(¢)(v) from right to left. Note that wy = v # Oy and w, = P(¢)(v) =
Oy. Let i* denote the largest index i such that w; # Oy. Then, we have

OV — fU‘;¢_|_1 - {F’(HJI‘*) - ’A"I-*-I-l . w,-* .

This means that w;+ is an eigenvector of ¢ with eigenvalue A;«, .



Existence of eigenvalues

Now, what about when V' is over R?

e Can do the same argument, except P now factors into linear and quadratic terms.

* Just need to show that we hit O in one of the linear terms, and not one of the
irreducible quadratic terms.

* Specifically, want to show we don’t get an equation of the form:
0y = @?(wy+) + bo(w;+) + cwys, with b? < 4c

This is where self-adjointness comes in.



Existence of eigenvalues

Now, what about when V is over R?

* Want to show we don’t get an equation of the form:
0y = @?(w;) + bo(w;+) + cwys, with b? < 4c

(Wi, goz(w,-x)) + b(w;i-, p(w;)) + c(wi+, wj+)
<':P(wr'*)f ‘P(W;HD + b<w5*r ':P(#ﬂ' )} T ﬂ<#ﬂi*rw:’*>
| @ (i) I* + b(wis, p(wir)) + ¢ ||w;|*

| (wio)|I* = [b] [|wi-| II{P(W: ) w;s

R o
(o) =) 4 (e T ) llow

0.

(wi-, ?’Z(Wf*) + by (w;-) + cw;-)

I

\%

So, the quadratic term can’t be 0.



Raleigh Quotients

Definition 3.1 Let ¢ : V — V be a self-adjoint linear operator and v € V' \ {0y }. The Rayleigh
quotient of @ at v is defined as

We can equivalently write R, (v) = (9, ¢(0)) foro = v/ ||v||.

In other words, it is the length of the projection of @ (¥) onto 7.

If v was an eigenvector, then this would be the eigenvalue.



Raleigh Quotients

Definition 3.1 Let ¢ : V — V be a self-adjoint linear operator and v € V '\ {Oy }. The Rayleigh
quotient of @ at v is defined as

We can equivalently write R, (v) = (9, ¢(9)) for o = v/ ||v|.

Proposition 3.2 Let dim (V) = nand let ¢ : V — V be a self-adjoint operator with eigenvalues
A = Ay > - > Ayl Then,

A= Ry(v) and A, = in R,(v
1 UE%,}E{E{V} 9(0) veﬁl{%v} p(0)

So, the vector v such that applying ¢ gives the largest “stretch” in the ¥ direction is the
eigenvector of largest eigenvalue, and likewise for the eigenvector of smallest eigenvalue.



Raleigh Quotients

Definition 3.1 Let ¢ : V — V be a self-adjoint linear operator and v € V '\ {Oy }. The Rayleigh
quotient of @ at v is defined as

Ro(0) = (0, ¢())

2
Io]

We can equivalently write R ,(v) = (9, ¢(0)) for o = v/ ||v||.

Proposition 3.2 Let dim (V) = nand let ¢ : V — V be a self-adjoint operator with eigenvalues
A = Ay > - > Ayl Then,

A= Ry(v) and A, = in R,(v
1 UE%,}E{E{V} ¢(0) veﬁl{%v} p(0)

Proof: Let wy, ..., w,; be an orthonormal basis of evectors with evalues A4, ..., 4,,. Let ¥ =
> ciw;. Then (D, (D)) = (&; c;w;, X Aiciw;) = X Ailci|?. Since X|c;|* = 1, thisis a
weighted average of the A;’s, and so is maximized at ¢; = 1, and minimized at ¢,, = 1.



Raleigh Quotients

Definition 3.1 Let ¢ : V — V be a self-adjoint linear operator and v € V '\ {Oy }. The Rayleigh
quotient of @ at v is defined as

We can equivalently write R, (v) = (9, ¢(9)) for o = v/ ||v|.
Extension / Generalization:

Proposition 3.3 (Courant-Fischer theorem) Let dim(V) = nandlet ¢ : V — V be a self-
adjoint operator with eigenvalues Ay > Ay > --- > A,,. Then,

Ak = max min Ry(v) =  min max Re(v).
i:lil'fl:::Sllilf—k IJES\{DV} dinllr.‘:r%g}r:—k—l ITES\‘{HV}



Positive Semidefiniteness

Definition 3.4 Let ¢ : V — V be a self-adjoint operator. ¢ is said to be positive semidefinite if
Ry(v) > 0forall v # 0. ¢ is said to be positive definite if R,(v) > 0 for all v # 0.

Proposition 3.5 Let ¢ : V. — V be a self-adjoint linear operator. Then the following are equiva-

lent:

Part of argument: if ¢ = a™a then (v, p(v)) =
1. Ry(0) > 0 forall v # 0. (v, a*(a(¥))) = (a(v), a(v)) = 0. This also

means that if v is an eigenvector, its eigenvalue
2. All eigenvalues of ¢ are non-negative. must be non-negative.

3. Thereexists « : V — V such that ¢ = a*w.

The decomposition of a positive semidefinite operator in the form ¢ = a"a is known as
the Cholesky decomposition of the operator. Note that if we can write ¢ as a*a for any
a : 'V — W, then this in fact also shows that ¢ is self-adjoint and positive semidefinite.
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