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Recap

• Eigenvectors and eigenvalues, eigenvectors of same eigenvalue form a 
subspace.  Eigenvectors of different eigenvalues are linearly independent, inner 
products, norm, Cauchy-Schwartz.

• Gram-Schmidt orthogonalization, any finite-dimensional inner product space 
has an  orthonormal basis.

• Properties of orthonormal bases: Fourier coefficients, Parseval’s identity

• Adjoint of a linear transform

• Reisz representation theorem.  Use to prove that every linear transformation 
has a unique adjoint

• Self-adjoint linear operators: eigenvalues are real, and eigenvectors 
corresponding to distinct eigenvalues are orthogonal.



The Real Spectral Theorem

Theorem: every self-adjoint operator 𝜑: 𝑉 → 𝑉 (which we know has real eigenvalues) 
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”). 

• E.g., square symmetric matrices over ℝ𝑛.

• Gives a nice way to view action of such operators.  Say 𝜑 has orthonormal 
eigenvectors 𝑤1, … , 𝑤𝑛 with associated eigenvalues 𝜆1, … , 𝜆𝑛.  Then:

For 𝑣 = σ𝑖 𝑐𝑖𝑤𝑖, we have 𝜑 𝑣 = σ𝑖 𝜆𝑖𝑐𝑖𝑤𝑖.

I.e., just stretching or shrinking in each “coordinate”.

Assume 𝑉 is finite-dimensional



The Real Spectral Theorem

Theorem: every self-adjoint operator 𝜑: 𝑉 → 𝑉 (which we know has real eigenvalues) 
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”). 

Proof strategy:

1. Show that any such 𝜑 has at least one eigenvalue.

2. Use (1) to prove the theorem.

We’ll do (2) first, then (1).

Assume 𝑉 is finite-dimensional



The Real Spectral Theorem

Theorem: every self-adjoint operator 𝜑: 𝑉 → 𝑉 (which we know has real eigenvalues) 
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”). 

Proof part 2:  induction on dimension of 𝑉.

Assume 𝑉 is finite-dimensional

• Base-case: dim 𝑉 = 1.  By part (1), there is at least one eigenvalue and 
eigenvector, so just scale the eigenvector to be unit-length.

• Let dim 𝑉 = 𝑘 + 1.  Let 𝑤 be the eigenvector we are guaranteed by part (1) 
and let 𝑊 = 𝑠𝑝𝑎𝑛( 𝑤 ).   Let 𝑊⊥ = {𝑣 ∈ 𝑉: 𝑣, 𝑤 = 0}.

• Now, the idea to finish is to (a) show that 𝑊⊥ is a subspace of 𝑉 of dimension 𝑘, 
(b) show that 𝜑 restricted to 𝑊⊥ is a self-adjoint operator on 𝑊⊥ (and in particular 
maps 𝑊⊥ to 𝑊⊥), and (c) apply our inductive hypothesis to 𝑊⊥ (which by design is 
orthogonal to 𝑤).



The Real Spectral Theorem

Theorem: every self-adjoint operator 𝜑: 𝑉 → 𝑉 (which we know has real eigenvalues) 
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”). 

Assume 𝑉 is finite-dimensional

• Now, the idea to finish is to (a) show that 𝑊⊥ is a subspace of 𝑉 of dimension 𝑘, 
(b) show that 𝜑 restricted to 𝑊⊥ is a self-adjoint operator on 𝑊⊥ (and in particular 
maps 𝑊⊥ to 𝑊⊥), and (c) apply our inductive hypothesis to 𝑊⊥ (which by design is 
orthogonal to 𝑤).

(a): If 𝑣1, 𝑤 = 0 and 𝑣2, 𝑤 = 0 then 𝑎1𝑣1 + 𝑎2𝑣2, 𝑤 = 0, so it’s a subspace.  
Dimension is 𝑘 because a basis for 𝑊⊥ ∪ {𝑤} is a basis for 𝑉.



The Real Spectral Theorem

Theorem: every self-adjoint operator 𝜑: 𝑉 → 𝑉 (which we know has real eigenvalues) 
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”). 

Assume 𝑉 is finite-dimensional

• Now, the idea to finish is to (a) show that 𝑊⊥ is a subspace of 𝑉 of dimension 𝑘, 
(b) show that 𝜑 restricted to 𝑊⊥ is a self-adjoint operator on 𝑊⊥ (and in particular 
maps 𝑊⊥ to 𝑊⊥), and (c) apply our inductive hypothesis to 𝑊⊥ (which by design is 
orthogonal to 𝑤).

(b): If 𝑣, 𝑤 = 0 want to show that 𝜑(𝑣), 𝑤 = 0.  

• We can use the fact that 𝜑 is self-adjoint and 𝑤 is an eigenvector. 

• 𝜑 𝑣 , 𝑤 = 𝑣, 𝜑 𝑤 = 𝑣, 𝜆𝑤 = 𝜆 𝑣, 𝑤 = 0.



The Real Spectral Theorem

Theorem: every self-adjoint operator 𝜑: 𝑉 → 𝑉 (which we know has real eigenvalues) 
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”). 

Assume 𝑉 is finite-dimensional

• Now, the idea to finish is to (a) show that 𝑊⊥ is a subspace of 𝑉 of dimension 𝑘, 
(b) show that 𝜑 restricted to 𝑊⊥ is a self-adjoint operator on 𝑊⊥ (and in particular 
maps 𝑊⊥ to 𝑊⊥), and (c) apply our inductive hypothesis to 𝑊⊥ (which by design is 
orthogonal to 𝑤).

(c): Now, just apply induction.

• Let {𝑤1, … , 𝑤𝑘} be an orthonormal basis for 𝑊⊥ of eigenvectors of 𝜑 restricted to 𝑊⊥. 

• So, 𝑤1, … , 𝑤𝑘 ,
𝑤

𝑤
 is an orthonormal basis for 𝑉 of eigenvectors of 𝜑. 



The Real Spectral Theorem

Theorem: every self-adjoint operator 𝜑: 𝑉 → 𝑉 (which we know has real eigenvalues) 
has an orthonormal basis of eigenvectors (i.e., is “orthogonally diagonalizable”). 

Proof strategy:

1. Show that any such 𝜑 has at least one eigenvalue.

2. Use (1) to prove the theorem.

Now, need to do (1).

Assume 𝑉 is finite-dimensional



Existence of eigenvalues

Let’s begin by assuming 𝑉 is over ℂ.  Then won’t need self-adjointness. 

Example: 
0 − 1
1 0



Existence of eigenvalues

Let’s begin by assuming 𝑉 is over ℂ.  Then won’t need self-adjointness. 



Existence of eigenvalues

Let’s begin by assuming 𝑉 is over ℂ.  Then won’t need self-adjointness. 

OK, so we have 𝑐0𝑣 + 𝑐1𝜑 𝑣 + ⋯ + 𝑐𝑛𝜑𝑛 𝑣 = 0𝑉 with 𝑐𝑛 ≠ 0. 



Existence of eigenvalues

Let’s begin by assuming 𝑉 is over ℂ.  Then won’t need self-adjointness. 

OK, so we have 𝑃 𝜑 = 𝑐𝑛 𝜑 − 𝜆𝑛 ⋅ 𝑖𝑑 … (𝜑 − 𝜆1 ⋅ 𝑖𝑑), and 𝑃 𝜑 𝑣 = 0.

This means that 𝑤𝑖∗  is an eigenvector of 𝜑 with eigenvalue 𝜆𝑖∗+1.



Existence of eigenvalues

Now, what about when 𝑉 is over ℝ?

• Can do the same argument, except 𝑃 now factors into linear and quadratic terms.

• Just need to show that we hit 0 in one of the linear terms, and not one of the 
irreducible quadratic terms.

• Specifically, want to show we don’t get an equation of the form:
0𝑉 = 𝜑2 𝑤𝑖∗ + 𝑏𝜑 𝑤𝑖∗ + 𝑐𝑤𝑖∗ , 𝑤𝑖𝑡ℎ 𝑏2 < 4𝑐

This is where self-adjointness comes in.



Existence of eigenvalues

Now, what about when 𝑉 is over ℝ?

• Want to show we don’t get an equation of the form:
0𝑉 = 𝜑2 𝑤𝑖∗ + 𝑏𝜑 𝑤𝑖∗ + 𝑐𝑤𝑖∗ , 𝑤𝑖𝑡ℎ 𝑏2 < 4𝑐

So, the quadratic term can’t be 0.



Raleigh Quotients

In other words, it is the length of the projection of 𝜑 ො𝑣  onto ො𝑣. 

If 𝑣 was an eigenvector, then this would be the eigenvalue.



Raleigh Quotients

So, the vector 𝑣 such that applying 𝜑 gives the largest “stretch” in the ො𝑣 direction is the 
eigenvector of largest eigenvalue, and likewise for the eigenvector of smallest eigenvalue.



Proof: Let 𝑤1, … , 𝑤𝑛 be an orthonormal basis of evectors with evalues 𝜆1, … , 𝜆𝑛.  Let ො𝑣 =
σ𝑖 𝑐𝑖𝑤𝑖.  Then ො𝑣, 𝜑 ො𝑣 = ⟨σ𝑖 𝑐𝑖𝑤𝑖 , σ𝑖 𝜆𝑖𝑐𝑖𝑤𝑖⟩ = σ𝑖 𝜆𝑖 𝑐𝑖

2.  Since σ𝑖 𝑐𝑖
2 = 1, this is a 

weighted average of the 𝜆𝑖’s, and so is maximized at 𝑐1 = 1, and minimized at 𝑐𝑛 = 1.

Raleigh Quotients



Raleigh Quotients

Extension / Generalization:



Positive Semidefiniteness

Part of argument: if 𝜑 = 𝛼∗𝛼 then 𝑣, 𝜑 𝑣 =
𝑣, 𝛼∗ 𝛼 𝑣 = 𝛼 𝑣 , 𝛼 𝑣 ≥ 0.  This also 

means that if 𝑣 is an eigenvector, its eigenvalue 
must be non-negative.
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